

Built on metal, shaping the future of industry.

Table of Content

01/	Company Profile	01
02/	Core Business and Services	03
03/	Strengths and Features	05
04/	Application fields	07
05/	Product Introduction Chromium-zirconium copper Cupronickel Phosphor Copper	09 09 15 19
06/	Mechanical properties	25
06/	Development Vision	29

Company Profile

Cymber is a modern enterprise based in Jiangyin City, Jiangsu Province—the core area of China's Yangtze River economic circle—specializing in the trade, processing, and supply chain services of metal materials, copper and aluminum. The company integrates R&D, production, warehousing, and sales. With strong technical capabilities, a large precision processing team, and extensive spot warehousing capacity, it is committed to providing global customers with one-stop solutions from raw materials to precision components. It has now developed into one of the most influential metal material service providers in East China.

Our Core Strengths:

Double assurance of processing capability and spot stock strength.

On one hand, the company has built a large-scale precision machining team in the industry, gathering dozens of senior technical craftsmen and precision equipment operators, equipped with multiple imported CNC machining equipment. It can undertake customized precisionmachining services forcopper bars, copper plates, copper tubes, and special-shaped copper parts, with tolerance accuracy controlled at the 0.01mm level, meeting the stringent requirements of high-end manufacturing fields.

On the other hand, the company has independently constructed a 3,200-ton professional copper material spot warehouse, maintaining a complete range of copper materials including red copper, brass, and bronze. With comprehensive varieties and sufficient quantities in spot inventory, it completely resolves customers' pain points of "urgent orders being difficult to place and waiting due to out-of-stock situations."

Our Commitment:

Cymber has always adhered to the business philosophy of "professional processing, spot delivery, quality first." We deeply understand that in the fierce market competition, speed and quality are equally important. We not only promise to provide high-quality copper materials and precision-processed products, but also commit to delivering efficient and flexible supply chain services.

>>>

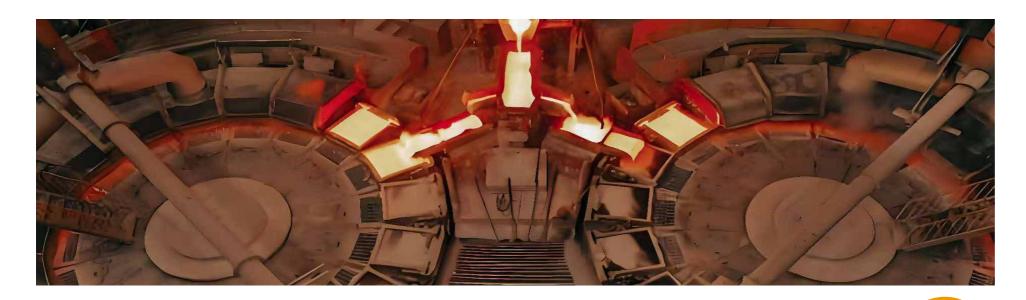
Core Business and Services »

Trade in Metal Materials

The company primarily deals in various non-ferrous metals (such as copper and aluminum), with a complete range of products and diverse specifications. It has established long-term and stable strategic cooperative relationships with multiple large domestic enterprise groups, ensuring stable supply sources and reliable quality.

Material Processing Service

To meet customers' personalized needs, the company is equipped with advanced leveling, slitting, cutting, laser processing and other equipment, capable of providing precise leveling, slitting, cutting, laser blanking and other processing services, effectively helping customers reduce inventory, lower costs, and improve production efficiency.



Supply Chain Integration Services

The company integrates upstream and downstream resources, providing a full-process supply chain service that covers raw material procurement, inventory management, precision machining, logistics distribution, and technical support. It builds an efficient and agile supply system to create maximum value for customers.

Advantages and Features »

Technical team is professiona

Customer-first philosophy

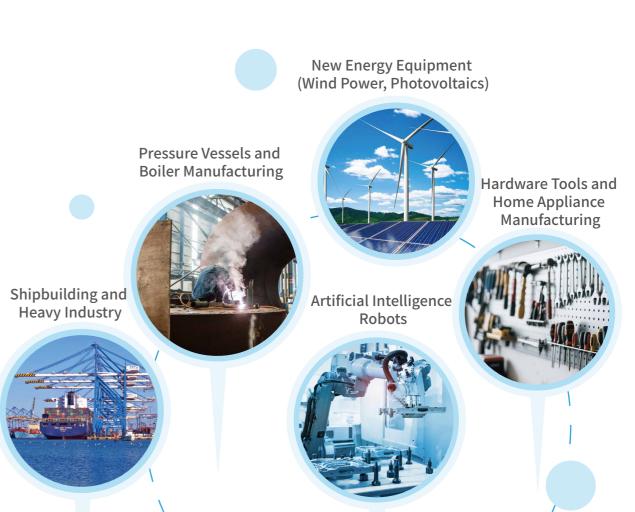
Always customer demand-centered, we provide flexible and diverse cooperation models. Whether it is large-scale engineering projects or scattered orders from small and medium-sized manufacturing enterprises, they can all receive equally efficient and professional services.

Advantageous geographical location

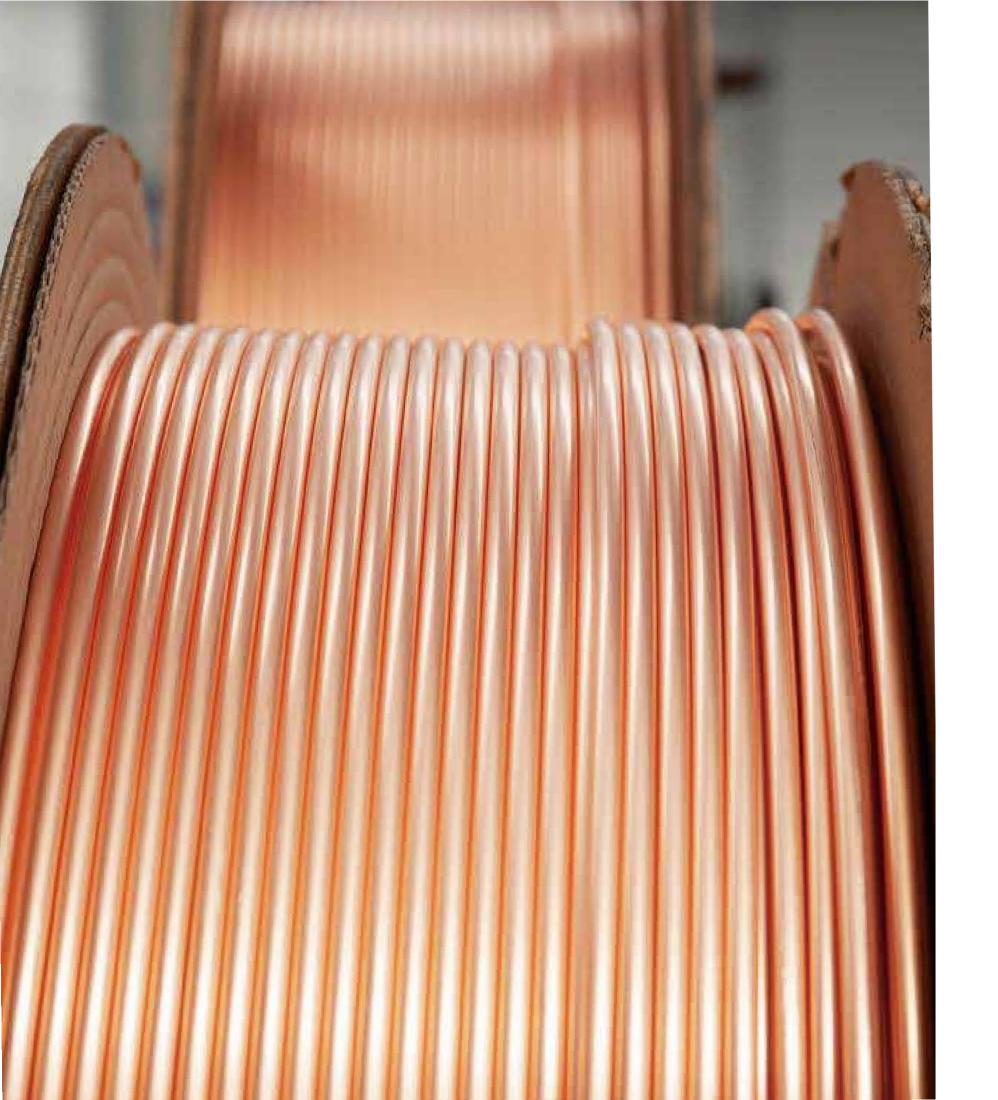
The company is located in Jiangyin, known as "China's No.1 County in Manufacturing," adjacent to the golden waterway of the Yangtze River. It is surrounded by a dense highway network, offering extremely convenient logistics and transportation. This enables rapid response to the needs of customers in the Yangtze River and across the country.

Resource channels are stable

Leveraging deep industry accumulation and close relationships with upstream copper mills, we possess advantageous procurement channels and price competitiveness, ensuring stable supply of bulk materials.



We have established a strict quality control system. All products are provided with material certificates to ensure that every link from the source to shipment meets the standards, satisfying customers' pursuit of high-quality materials.


We have an experienced and highly skilled service team that can provide customers with material selection consultation, technical Q&A, and after-sales support, resolving various issues encountered in practical applications.

Application fields »

Chromium Zirconium Copper »

Chromium-zirconium copper is a copper alloy material with high strength, high electrical conductivity, and high hardness. It is composed of elements such as chromium, zirconium, and copper, offering excellent mechanical properties and chemical stability. Chromium-zirconium copper wire excels in applications requiring high strength, such as resistance to tension, compression, or bending.

Chromium Zirconium Copper rod >>>

Product Specifications

Name:	Chromium Zirconium Copper rod
Standard:	ASTM B196, RWMA Class 2, ISO 5182:1991, SAE J461/J463, DIN 17666
Material	C18500、C18150、QCr0.5、QCr0.6-0.4、, QCr1-0.15
Surface:	Glossy surface/Epidermal surface
Diameter:	D7-D-350mm
Length:	600-6000mm

Product Features

High hardness
 High strength
 Heat resistance
 High electrical and thermal conductivity
 Corrosion resistance
 Good machinability

Application Field

Welding Equipment, Electrical Industry, Mechanical Manufacturing, Aerospace, Rail Transit, Energy and Chemical Industry, Military Industry

Chromium Zirconium Copper Plate >>>

Product Specifications

Name:	Chromium Zirconium Copper Plate
Standard:	ASTM B196, RWMA Class 2, ISO 5182:1991, SAE J461/J463, DIN 1766
Material	C18500、C18150、QCr0.5、, QCr0.6-0.4、QCr1-0.15
Surface:	Glossy surface
Diameter:	As required
Length:	As required

Product Features

High hardness
 High strength
 Heat resistance
 High electrical and thermal conductivity
 Corrosion resistance
 Good machinability

Application Field

Welding equipment, Electrical industry, Mechanical manufacturing, Aerospace, Rail transit, Energy and chemical industry

Chromium Zirconium Copper Finished Part »

Product Specifications

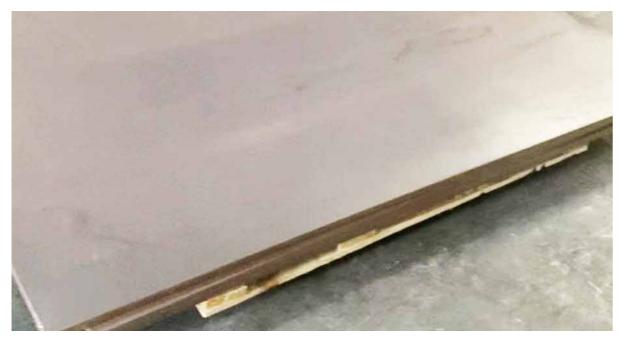
Ntame:	Chromium Zirconium Copper Finished Part
incarres.	emonitum zireomum copper rimsneu r ure
डिसार्वमार्यः	ASTM B196, RWMA Class 2, ISO 5182:1991, SAE J461/J463, DIN 17666
NV atto riæll	C18500 、C18150、QCr0.5、QCr0.6-0.4、QCr1-0.15
Sturftacce:	Shiny surface
Diametter:	As required
Llærggth:	As required

Product Features

- •High Hardness High Strength Heat Resistance High Electrical and Thermal Conductivity Corrosion Resistance Good Processability

Application Field

Resistor electrode, Mold, Motor commutator, Electronic connector, Aerospace

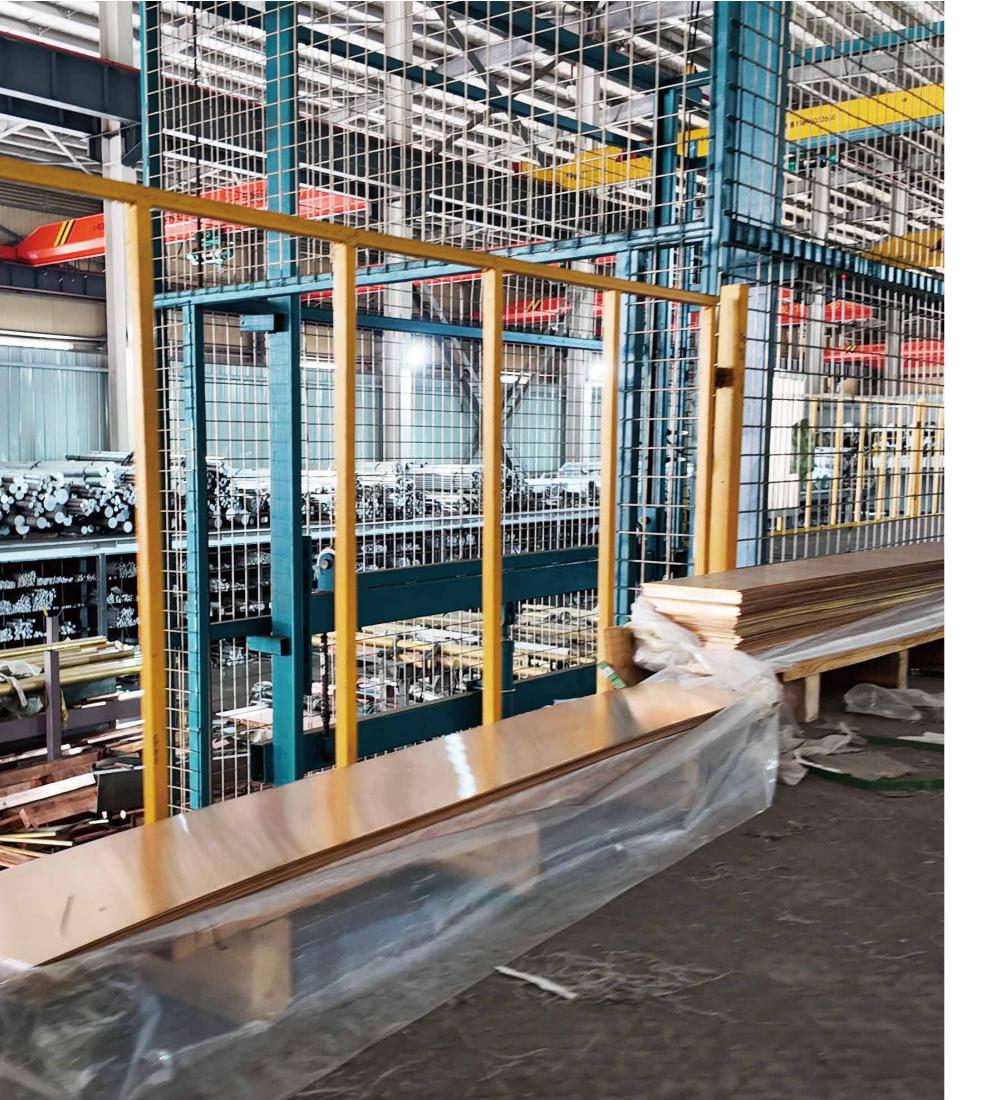


cupronickel »

Cupronickel is a copper-based alloy with nickel as the primary additive element. It has a silvery-white appearance with a metallic luster, hence the name "cupronickel." Copper and nickel can form an infinite solid solution with each other, resulting in a continuous solid solution, meaning that regardless of their proportions, it always remains an α -single-phase alloy. When nickel is melted into red copper and the content exceeds 16%, the resulting alloy becomes as white as silver. The higher the nickel content, the whiter the color. The nickel content in cupronickel is generally 25%.

Cupronickel plate »

Product Specifications


Name:	Cupronickel plate
Standard:	GB/T 2040, GB/T 2054, ASTM B171
Material	B10、B30
Surface:	Glossy surface/Brown surface
Diameter:	As required
Length:	As required

Product Features

 $\textbf{\cdot} \textbf{High hardness} \ \textbf{\cdot} \textbf{Plasticity} \ \textbf{\cdot} \textbf{Ductility} \ \textbf{\cdot} \textbf{Corrosion resistance} \ \textbf{\cdot} \textbf{Thermal and electrical conductivity}$

Application Field

Shipbuilding, Offshore Engineering, Chemical Industry, Power Electronics, Architectural Decoration, Machinery Manufacturing, Pharmaceutical Equipment, Food Equipment

Phosphor Copper »

Phosphor bronze (phosphor bronze) (tin bronze) (tin-phosphor bronze) is composed of bronze with the addition of deoxidizer phosphorus (P content 0.03~0.35%), tin content 5~8%, and other trace elements such as iron (Fe), zinc (Zn), etc. It has excellent ductility and fatigue resistance, can be used for electrical and mechanical materials, and has higher reliability than general copper alloy products.

Phosphor Bronze Plate >>

Product Specifications

Name:	Phosphor Bronze Plate
Standard:	ASTM B103/B103M, ASTM B139, AMS 4510, AMS 4510F, JIS H 3110, DIN 1705, ISO 9001:2015, DEF STAN 02-838
Material	C51000、C51900、C52100、QSn6.5-0.1、QSn8-0.3
Surface:	Glossy surface
Diameter:	As required
Length:	As required

Product Features

- High strength Excellent electrical and thermal conductivity Corrosion resistance
- Easy to process and weld

Application Field

Electrical and Electronics Industry, Offshore Engineering and Shipbuilding, Automotive and Machinery Manufacturing, Sanitary Ware and Electroplating, Medical Electronic Equipment

Phosphor bronze rod »

Product Specifications

Name:	Phosphor bronze rod
Standard:	ASTM B103/B103M, ASTM B139, AMS 4510, AMS 4510F, JIS H 3110, DIN 1705, ISO 9001:2015, DEF STAN 02-838
Material	C51000、C51900、C52100、QSn6.5-0.1、QSn8-0.3
Surface:	Glossy surface
Diameter:	4-250mm
Length:	600-6000mm

Product Features

- High strength Excellent electrical and thermal conductivity Corrosion resistance
- Easy to process and weld

Application Field

Electrical and Electronics Industry, Offshore Engineering and Shipbuilding, Automotive and Machinery Manufacturing, Sanitary Ware and Electroplating, Medical Electronic Equipment

Phosphor bronze rod »

Product Specifications

Name:	Phosphor bronze rod
Standard:	ASTM B139/B139M, JIS H 3270, ISO 427, DIN 17672
Material	QSn6.5-0.1、QSn8-0.3、QSn7-0.2、C51100、C51000、C51900、C52100
Surface:	Glossy surface
Diameter:	4-250mm
Length:	600-6000mm

Product Features

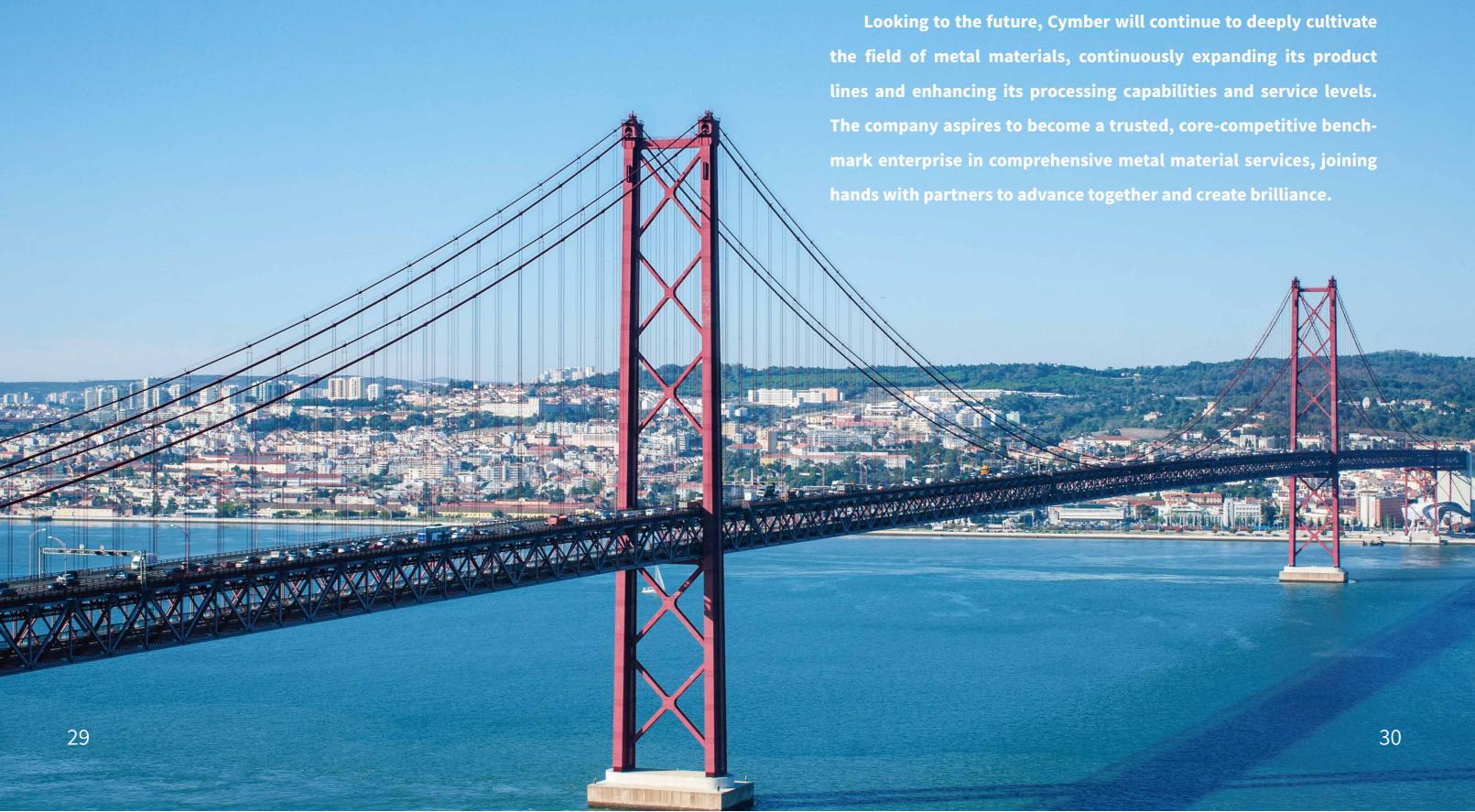
- Corrosion resistance
 Wear resistance
 Fatigue resistance
 Good processability
 Good electrical and thermal conductivity
 Good environmental friendliness

Application Field

Mechanical Industry, Electronics and Electrical, Shipbuilding and Automotive, Precision Instruments

Mechanical properties

		Tensile test			Hardness test			
Model number	Status	Thickness /mm	Tensile strength R./(N/mm²)	Elongation after fracture A ₁ 1.3/%	Thickness / mm	Vickers hardness HV	Rockwell hardness HRB	
	R	4~14	≥195	≥30	_	_	_	
T2、T3 TP1、TP2 TU1、TU2	M Y ₁ Y ₂ Y	0.3~10	\geqslant 205 215~275 245~345 295~380 \geqslant 350	≥30 ≥25 ≥8 —	≥0.3	≤70 60~90 80~110 90~120 ≥110	- - -	
Н96	M Y	0.3~10	≥215 ≥320	≥30 ≥3	_	_	_	
Н90	M Y ₂ Y	0.3~10	≥245 330~440 ≥390	≥35 ≥5 ≥3	_	_	_	
H85	M Y ₂ Y	0.3~10	≥260 305~380 ≥350	≥35 ≥15 ≥3	≥0.3	≤85 80~115 ≥105	_	
H80	M Y	0.3~10	≥265 ≥390	≥50 ≥3				
Н70、Н68	R	4~14	≥290	≥40	_	_	_	
H70 H68 H65	M Y ₁ Y ₂ Y T TY	0.3~10	\geqslant 290 325~410 355~440 410~540 520~620 \geqslant 570	≥40 ≥35 ≥25 ≥10 ≥3 —	≥0.3	≤90 85~115 100~130 120~160 150~190 ≥180	- - - -	
	R	4~14	≥290	≥30				
H63 H62	M Y ₂ Y T	0.3~10	\geqslant 290 350∼470 410∼630 \geqslant 585	≥35 ≥20 ≥10 ≥2.5	≥0.3	≤95 90~130 125~165 ≥155	- - - -	


			Tensile test	Hardness test			
Model number	Status	Thickness /mm	Tensile strength R./(N/mm²)	Elongation after fracture A ₁ 1.3/%	Thickness /mm	Vickers hardness HV	Rockwell hardness
	R	4~14	≥290	≥25	_	_	_
Н59	M		≥290	≥10		_	_
	Y	0.3~10	≥410	≥5	≥0.3	≥130	_
	R	4~14	≥370	≥18	_	_	_
HPb59-1	M		≥340	≥25			
111 000 1	Y ₂	0.3~10	390~490	≥12	_	_	_
	Y		≥440	≥5			
	v				0.5~2.5	165~190	
HPb60-2	Y	_	_	_	2.6~10	_	75~92
	T	_	_	_	0.5~1.0	≥180	_
	M		≥380	≥30			
HMn58-2	Y2	0.3~10	440~610	≥25	_	_	_
	Y		≥585	≥3			
	R	4~14	≥340	≥20		_	_
HSn62-1	M		≥295	≥35			
н5по2-1	Y2	0.3~10	350~400	≥15	_	-	_
	Y		≥390	≥5			
HMn57-3-1	R	4~8	≥440	≥10	_	_	_
HMn55-3-1	R	4~15	≥490	≥15	_	_	_
HA160-1-1	R	4~15	≥440	≥15	_	_	
HA167-2.5	R	4~15	≥390	≥15	_	_	_
HA166-6-3-2	R	4~8	≥685	≥3	_	_	_
HNi65-5	R	4~15	≥290	≥35	_	_	_
0.115	M	0.45.19	≥275	≥33	_	_	
QA15	Y	0.4~12	≥585	≥2.5			
QA17	Y ₂	0.4~12	585~740 ≥10	_		_	
4.11.	Y	••••	≥635	≥5			
QA19-2	M	0.4~12	≥440	≥18	_	_	_
	Y		≥585	≥5			
QA19-4	Y	0.4~12	≥585	-	_	_	
	R	9~14	≥290	≥38		_	
QSn6. 5-0. 1	M	0.2~12	≥315	≥40	≥0.2	≤120	_
	Y4	0.2~12	390~510	≥35		110~155	
	Y2	0.2~12	490~610	≥8	≥0.2	150~190	_

		Tensile test			Hardness test		
Model number	Status	Thickness /mm	Tensile strength R./(N/mm²)	Elongation after fracture A ₁ 1.3/%	Thickness /mm	Vickers hardness HV	Rockwell hardness
		0.2~3	590~690	≥5		180~230	
	Y	>3~12	540~690	≥5		180~230	_
QSn6. 5-0. 1	T		635~720	≥1	≥0.2	200~240	_
	TY	0.2~5	≥690	_		≥210	_
QSn6. 5-0. 4	M		≥295	≥40			
	Y	0.2~12	540~690	≥8	_	_	_
QSn7-0.2	Т		≥665	≥2			
QSn4-3	M		≥290	≥40			
QSn4-0.3	Y	0.2~12	540~690	≥3	_	_	_
45H1 0.0	T		≥635	≥2			
	M		≥345			≤120	_
	Y		390~510	≥40		100~160	_
QSn8-0.3	Y2	0.2~5	490~610	≥35	≥0.2	150~205	_
	Y		590~705	≥20		180~235	_
	Т		≥685	≥5 —		≥210	_
QCd1	Y	0.5~10	≥390	_	_	_	
QCr0.5					0.5.45	> 440	
QCr0. 5-0. 2-0. 1	Y	_	_	_	0.5~15	≥110	
QMn1.5	M	0.5~5	≥205	≥30	_	_	_
QMn5	M	0 5 - 5	≥290	≥30			
QIIID	Y	0.5∼5	≥440	≥3	_		_
	M		≥340	≥40			
QSi3-1	Y	0.5~10	585~735	≥3	_	_	_
	T		≥685	≥1			
	M		≥290	≥35			_
QSn4-4-2.5	Y ₃	0.8~5	390~490	≥10	≥0.8		65~85
QSn4-4-4	Y ₂	0.0 3	420~510	≥9	>0.0		70~90
	Y		≥510	≥5			_
	M		≥340	≥35			
P7n15-20	Y ₂	0.5~10	440~570	≥5	_	_	_
BZn15-20	Y	0.0.710	540~690	≥1.5			
	Т		≥640	≥1			
	M		≥375	≥20		-	
BZn18-17	Y2	0.5~5	440~570	≥5	≥0.5	120~180	_
	Y		≥540	≥3		≥150	

		Tensile test			Hardness test			
Model number	Status	Thickness	Tensile strength	Elongation after fracture	Thickness	Vickers hardness	Rockwell hardness	
		/ mm	R. / (N/mm²)	A ₁ 1.3/%	/ mm	HV	HRB	
	R	7~14	≥215	≥20	_	_	_	
В5	M	0.5~10	≥215	≥30				
	Y	0.5~10	≥370	≥10		_		
	R	7~14	≥295	≥20	_	_	_	
B19	M	0.5.10	≥290	≥25				
	Y	0.5~10	≥390	≥3		_		
	R	7~14	≥275	≥20	_	_	_	
BFe10-1-1	M	0.5~10	≥275	≥28	_	_	_	
	Y		≥370	≥3				
	R	7~14	≥345	≥15		_		
BFe30-1-1	M	0.5~10	≥370	≥20		_	_	
	Y		≥530	≥3				
BA1 6-1.5	Y	0.5~12	≥535	≥3	_	_	_	
BA1 13-3	CYS	0.5~12	≥635	≥5	_	_	_	
DW 40 1 5	M	0.5.10	390~590	actual measurement				
BMn40-1.5	Y	0.5~10	≥590	actual measurement				
BMn3-12	M	0.5~10	≥350	≥25	_			
Note: For plates with thickness outside the specified range, the properties shall be agreed upon between the supplier and the buyer.								

Development Vision »

